
1

Fire Extinguishing Simulation Parallelization
Diogo Brás, Miguel França and Tiago Mendes

Abstract—Parallelizing a problem given its sequential solution can require some analysis and evaluation beforehand. We propose a
possible parallelization solution for the problem presented by Arturo Gonzalez-Escribano, Jorge Fernandez-Fabeiro Group Trasgo,
Universidad de Valladolid (Spain), with their Simplified simulation of fire extinguishing, and their sequential code written in C language.
We also present some analysis using profiling techniques and generation of test cases which guided us in choosing what regions of
the code to parallelize. We used OpenMP to parallelize the code and gprof as a profiler.

Index Terms—Parallelization, Concurrency, OMP, Speedup

✦

1 INTRODUCTION

PARALLELIZATION of a program is usually defined as
the break down of a larger problem, into smaller inde-

pendent problems, to be ran by multiple processors, who
can share pieces of memory and whose results are possibly
merged at the end. There are two main goals justificative
for the use of parallelization, to reduce execution time or
to increase the amount of work done in the same execution
time. In this assignment we focus on reducing execution
time since the goal is to parallelize a fixed simulation, whose
size wouldn’t make sense to be increased within the same
execution. This problem can prove to be quite challenging.
In theory, when parallelizing a program, adding more prob-
lem division paired with extra processors would result in
a faster execution. However, in practice, this hypothesis is
not certain as the execution is always dependent on the
hardware. Having a larger subdivision of the problem and
asking for it to run in a larger amount of processors than the
ones available, proves to, most times, not have a positive
result based on the expectations. Furthermore, dividing the
problem and distributing it to different processors during
execution takes time, making it not worth to parallelize
smaller problems. The amount of execution time reduction
can be measured by the concept of Speed Up, which is
defined as the ratio of serial execution time to the parallel
execution time [4]. To determine which pieces of code to
prioritize for parallelization (performance bottlenecks), a
profiler can be used. Profiling is a form of dynamic program
analysis, which can provide information on duration, time
complexity and memory usage of function calls. [5]

June 7, 2022

1.1 The serial problem
The Agent-based Simulation of Fire Extinguishing is an
assignment created by Arturo Gonzalez-Escribano and Jorge
Fernandez-Fabeiro from the University of Valladolid to teach
the approaches to the same problem with different parallel
programming models [3]. In our case, we exploited this
problem using OpenMP, a shared-memory parallel pro-
gramming API.

In a very simplified way, this problem consists of the fol-
lowing features: activation of focal points, heat propagation,
teams movement and the impact of each team on the heat
surrounding them.

2 METHOD

We committed most of our work into parallelizing and
optimizing the sequential code as best as we could. Our
main goal was to get the highest speedup possible from the
original code while not wasting too many resources and not
trying to ”overkill” it. Our solutions were mainly focused
on basic OpenMP concepts such as simple parallelization of
for loops and reductions. The code was divided essentially
in two parts. The input reader and the actual simulation
iterations and memory allocation. For the simplicity of
analysis, on the subsequent sections we only measure the
time it takes for the program to run the second part.

2.1 First Improvement

We started our analysis of the C code by performing two
simple code optimizations, not related to parallelization.

The first optimization was to use a technique similar to
double buffering. ”A programming technique that uses two
buffers to speed up a computer that can overlap I/O with
processing. Data in one buffer are being processed while the
next set of data is read into the other one.” [6]. This way
we can keep reusing the matrices we already have in order
to avoid doing repeated work or transferring the data from
one matrix to the other.

The second optimization was a simple change in the way
the distance is computed on multiple iterations of the loops.
Instead of using the square root function, sqrt, from the
standard C library we compute the squares of both values
that are being compared in order to avoid the call to that
heavy computing function.

2.2 Profiling & Parallelization

To profile our code we used gprof, a profiling tool to gather
statistics about C programs.

Profiling allowed us to identify where the program’s
time was being spent and which lines were being called
the most while also taking the most time running.

Having different test cases for this part is crucial. So after
creating a small program in the Java programming language
that creates an environment for the simulation given some
parameters (horizontal and vertical size of the grid, the



2

number of iterations, the number of teams and the total
number focal points) we generated several test cases with
each one focusing on potential slow down aspects of the
code.

With each test case we found a new portion of the code
that was taking the most significant time to run. Following
these results there must be some analysis done, before trying
to parallelize a certain loop. This analysis consists in evalu-
ating the dependencies between the loops and iterations and
loop carried dependencies. So in order to obtain a satisfying
result in parallelization these must be well optimized.

2.3 Finding sequential cut-offs
After knowing how and where to parallelize the code, some
more evaluation is needed in order to be able to generalize
the program to run the most efficiently in the majority of
cases. To do this we need to find the sequential cut-off for
each parallelized code portion.

For this part we considered that the only possibilities
were to either run each portion of code fully sequentially
or parallelized always with the same number of threads
throughout the program. So no dynamic management of
the number of threads was done, in order to find the nec-
essary/optimal number to run a certain parallelizable loop
needs. However we tried using OpenMP’s default dynamic
adjustment of the number of threads and the results turned
out to be worse as it usually doesn’t find the best number of
threads for a specific implementation.

In order to find the sequential cut-off we created another
batch of test cases. One batch for each of the previous
problems found. In each batch we tested different values, for
the variables in which the loops depended, and discovered
when it was worth parallelizing or running sequentially
each code portion. We did this by analysing in what value
did the time spent running the sequential code was starting
to be worse than parallelizing it. From that point onwards,
parallelizing the code was always worth it. Using the
OpenMP’s keyword if inside the #pragma omp statement we
were able to decide at runtime if the code following that
should be parallelized or not.

3 EXPERIMENTS

After running the initially provided tests, several times, we
constructed the following execution time table:

seq Time (secs)
test1 0,0016 ± 0,0001
test2 88,1755 ± 1,1333
test3 31,8986 ± 0,6057
test4 40,0977 ± 0,9189
test5 0,0041 ± 0,0002

TABLE 1
sequential version

This table shows us the average time that the initial
sequential code takes on each test and the corresponding
standard deviation.

After making the first improvements on the sequential
version referred in 2.1, we proceeded to run the same tests,
several times, again and constructed a new table:

impSeq Time (secs)
test1 0,0014 ± 0,0000
test2 67,3883 ± 0,9312
test3 25,2386 ± 0,0936
test4 30,8513 ± 2,1725
test5 0,0037 ± 0,0003

TABLE 2
improved sequential version

This table shows us that even minor tweaks on a sequen-
tial code can make a big difference in the final result, as a
time costly function or routine can be called multiple times
during a cycle.

After analysing multiple test cases and finding multiple
performance bottlenecks 2.2, we proceeded to parallelize
them. Several tests were used to verify correctness and the
same initial tests were used to construct the same execution
time table as before:

omp Time (secs)
test1 0,0037 ± 0,0001
test2 36,6096 ± 0,1848
test3 15,4412 ± 2,2126
test4 25,1347 ± 0,2415
test5 0,0067 ± 0,0001

TABLE 3
omp parallelized version

This table satisfies our initial expectations, where the
parallelized version would be faster on larger and more time
consuming problems but slower on smaller problems, due
to overhead of threading resource consumption.

3.1 Sequential cut-off

With only the section 4.4 of the provided code parallelized,
relative to the improved sequential version, we proceeded to
run multiple tests where only the number of teams would
vary. This made it so we could recognize the differences
in execution time as an improvement or not of that same
section. We obtained the following table:

n teams impSeq 2 threads 4 threads 8 threads
20000 5,411925 6,040235 5,734174 5,30323
25000 6,032743 7,165107 6,253542 6,222421
30000 7,588712 8,71174 7,415538 7,344133
45000 18,525552 15,910451 12,610695 12,695659
50000 20,554327 19,351132 14,885857 15,135402
100000 49,179453 41,850883 28,680078 29,119419
300000 85,603824 81,588832 54,032353 54,601846

TABLE 4
Sequential cut off table for parallelization on 4.4

With this table we can conclude that for around 30000
teams the parellelized version starts to be faster. Even
though the distinction between threads was not necessary
in this step, it helps us strengthen the belief that for the
particular machine where the tests were being ran, the ideal
number of threads was 4.

Using a python ploting script, we are able to create a
graph and calculate a estimation of the intersection point
between the execution times:



3

Fig. 1. Sequential cut off graph for parallelization on 4.4

In this case the intersection between the sequential and
4 threads lines was on X = 27802, leaving us with a good
estimation for the cut-off on this section.

The same process was repeated for all other sections.
Here we demonstrate the experimentation on section 4.3,
just to show that the results can be very different from one
another. Once again tests were made with only this section
parallelized and differed only in meaningfully values.

n teams x n focal p impSeq 2 threads 4 threads 8 threads
10000 1,737427 1,744368 1,784506 1,780357
250000 1,695187 1,624315 1,698878 1,663076
640000 1,723713 1,654085 1,731241 1,6684
1000000 1,835826 1,721149 1,783247 1,735846
10000000 5,511364 3,955861 3,405557 3,325923

TABLE 5
Sequential cut off table for parallelization on 4.3

Here we have the multiplication between number of
teams and focal points as the varying value. This was due
to the results of tests with the same size being distinctive
based on the difference between the two values, although
maintaining the improvement ratio.

Fig. 2. Sequential cut off graph for parallelization on 4.3

In this case the intersection was on X = 685087, leaving
us with a good estimation for the cut-off on this section.

4 RESULTS

With the final version of the parallelized code we can finally
estimate how efficient our work is. To do this we will use
Amdahl’s Law to calculate the maximum speedup possible
and compare that to our current speedup. Amdahl’s Law is
a formula used to estimate the maximum speedup a pro-
gram can have knowing it has a fraction that is sequential
and another that is parallelizable.

The Amdahl’s Law formula is:

S =
T1

Tn
=

1
F
n + (1− F )

(1)

n = number of processors
F = fraction of the program that is parallelizable
Tn = time it takes to run with n processors
S = maximum speedup with n processors

But since we don’t know the fraction of the code that is
sequential or parallelizable we must first estimate the value
of F. Continuing the previous equation (1):

1

S
− 1 = F

(1− n)

n
(2)

solving for F we have:

F =
1
S − 1
1−n
n

=
n (T1 − Tn)

T1(n− 1)
(3)

Now we can make a rough estimation of the final F value
if we compute for a given range of processors the F value
of each by replacing the n in equation 3 with the number
of processors being used, and taking the average over all of
them.

Fi =
ni

(ni − 1)

T1 − Tn1

T1
, i = 2..N (4)

F̄ =

∑N
i=2 Fi

N − 1
(5)

We ran these next calculations for test2 because this test
is for general purpose and we think it is a good performance
checker. Our results for evaluating Fi, with i up to 8 threads,
are the following:

Nº Threads Time (secs)
2 threads 45,8781 ± 0,2627
3 threads 40,0148 ± 0,7038
4 threads 36,6096 ± 0,1848
5 threads 39,2482 ± 0,5213
6 threads 38,2533 ± 0,4624
7 threads 38,6664 ± 0,4085
8 threads 38,1343 ± 1,3244

TABLE 6
Results for running Test 2 with multiple threads

Nº Threads Fi

2 threads 0.6384
3 threads 0.6093
4 threads 0.6089
5 threads 0.5219
6 threads 0.5188
7 threads 0.4972
8 threads 0.4961

TABLE 7
Computed F value for each number of threads



4

The resulting F̄ value is 0.5558, that is the average over
all the values in table 7.

Now that we have an estimate for how much of our
program is parallelizable we can measure the value for the
maximum speedup achievable. Amdahl’s Law can also give
us the maximum possible speedup, which serves as an up-
per bound for the best possible outcome from parallelizing
this problem even if we add more processors. We compute
the maximum speedup by using the following:

Smax = lim
n→∞

S =
1

Fsequential
=

1

1− Fparallel
(6)

With this formula our result for the Maximum Speedup
possible is 2.251. Now we can easily compute our current
best speedup by simply taking the run with the number
of threads which we had the lowest execution time and
computing the ratio between the time it takes to run the
sequential program and that time, for the same test case.
Our current best speedup is 1.8407, with 4 threads.

If we now compute the ratio between our speedup and
the maximum speedup,

1.8407/2.251 = 0.8177

this tells us that we were able to parallelize around 82%
of everything that we could have parallelized in the most
efficient way possible.

If we then consider the very initial implementation of the
sequential version, without any improvements, we reached
a final speedup of around

88, 1755/36, 6096 = 2,39544847

which is significantly higher. This result has no relation with
the maximum speedup calculated as this was done for the
initial problem without any code improvements.

4.1 Running in a cluster

It is always good to test the same program in different
machines to evaluate the results, and if you have a cluster
at your disposal its even better. We were given the chance
to run our work on the faculty cluster.

The results were the following for the test2: .

test2 - cluster Time (secs)
2 threads 53,3515 ± 0,2619
4 threads 49,2901 ± 4,4044
8 threads 34,0447 ± 2,6857
16 threads 28,2745 ± 2,2506
32 threads 24,9491 ± 1,3416
64 threads 34,0447 ± 2,6857

TABLE 8
Results of running Test 2 on cluster

Fig. 3. Results of running Test 2 on cluster - Graph

As expected the results for running the same parallelized
program in the cluster were better overall. As the cluster has
a larger amount of processors than the machine we initially
tested on, the problem can be subdivided even more into
smaller problems, making it possible to run even faster than
before, using a larger number of threads. These results have
a speedup for the cluster of around 3.489.

5 CONCLUSION

After following the professor’s recommended methodology
we found that maintaining a good work ethic and rhythm
was fairly easy.

Analysing the results, we are confident to assume our
parallelization solution was adequate to the hardware it
was tested on. Achieving 82% of the esimated maximum
speedup, we assume our parallelization was successful and
met the assignment’s expectation. We are aware experimen-
tations and optimizations were done for a single machine
and values as number of threads and sequential cut-offs
would need to be tweaked depending on the hardware
used.

We were able to meet our expectations on the majority
of accomplished experimentations, only during sequential
cut-off testing did we have to rethink some possibilities, as
the initially obtained results were confusing.

Hardware exists.

ACKNOWLEDGMENTS

We would like to acknowledge group 23 and 25 as they were
very helpfull to discuss and compare all the experimenta-
tion results between us, including profiler outputs, section
parallelization and sequential cut-offs.

INDIVIDUAL CONTRIBUTIONS

We followed the recommended work methodology by the
professor. No specific tasks were assigned to each group
member, as the work evolved, each member knew what to
do next and continued where the previous member had left.
Sometimes work was done in parallel aswell, but following
the same idea.
Relative contributions:
Diogo Brás (35%), Miguel França (35%), Tiago Mendes (30%)



5

REFERENCES

[1] GNU gprof, The GNU Profiler
https://ftp.gnu.org/old-gnu/Manuals/gprof-
2.9.1/html mono/gprof.html
Last accessed 6 Jun 2022

[2] OPENMP API Specification: Version 5.0 November 2018, 2.19.5
Reduction Clauses and Directives
https://www.openmp.org/spec-html/5.0/openmpsu107.html
Last accessed 6 Jun 2022

[3] Agent-based Simulation of Fire Extinguishing: An assignment for
OpenMP, MPI, and CUDA/OpenCL
https://tcpp.cs.gsu.edu/curriculum/sites/default/files/ws eduhpca107s2-
file1.pdf
Last accessed 6 Jun 2022

[4] A. Grama, A. Gupta, and V. Kumar, ”Isoefficiency Function: A
Scalability Metric for Parallel Algorithms and Architectures”, IEEE
Parallel and Distributed Technology, Special Issue on Parallel and
Distributed Systems: From Theory to Practice, Volume 1, Number
3, pp 12-21, August 1993.

[5] Profiling in computer programming
https://en.wikipedia.org/wiki/Profiling (computer programming)
Last accessed 6 Jun 2022

[6] PC Mag, Double buffering
https://www.pcmag.com/encyclopedia/term/double-buffering
Last accessed 6 Jun 2022


